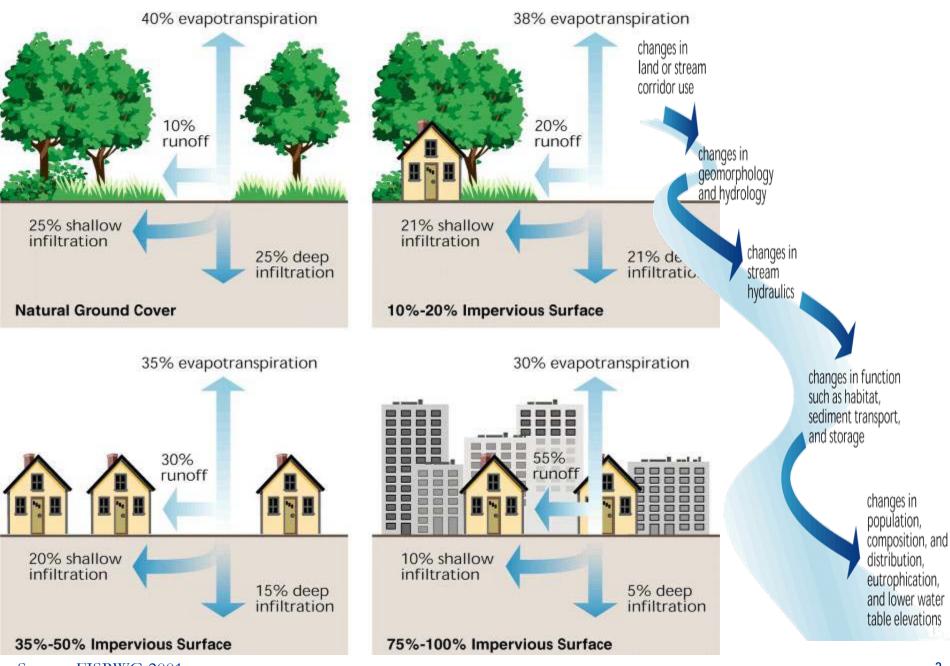


Green Infrastructure Design Principles and Considerations


April 26, 2010 Kalamazoo, MI

Daniel P. Christian, PE, D.WRE Tetra Tech Dan.Christian@tetratech.com

Agenda

Introduction

- Types of Practices and What They Do
- Plants
- Soils
- Outlets
- Example Approach
- Strategies for Design/Implementation
- Implementation Examples
- Summary

Source: FISRWG 2001

Consequences of Development to Urban Streams

Large Storm

Higher and More Rapid Peak Discharge

Small Storm

More Runoff Volume Lower and Less Rapid Peak Gradual Recession

Higher Baseflow,

Pre-development
Post-development

Green Infrastructure

- Green Infrastructure management approaches and technologies infiltrate, evapotranspire, capture and reuse stormwater to maintain or restore natural hydrologies
- Benefits
 - Reduced and delayed stormwater runoff volume
 - Enhanced groundwater recharge
 - Reduced stormwater pollutants
 - Increased carbon sequestration
 - Urban heat island mitigation and reduced energy demands
 - Improved air quality
 - Additional wildlife habitat and recreational space
 - Improved human health
 - Increased land values

Agenda

Introduction

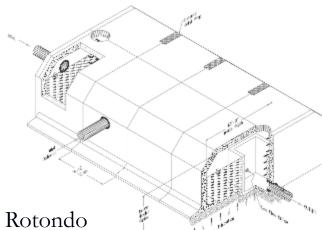
- Types of Practices and What They Do
- Plants
- Soils
- Outlets
- Example Approach
- Strategies for Design/Implementation
- Implementation Examples
- Summary

Water Storage - Surface

Bioretention (rain garden) •Good infiltration •Poor evaporation •Good plant uptake and transpiration Traditional Detention •No infiltration •Poor evaporation •Poor plant uptake and transpiration

Traditional Retention •Poor infiltration •Good evaporation •Poor plant uptake and transpiration Green Roof •No infiltration •Good evaporation •Good plant uptake and transpiration

10


A DE LE TIME

Water Storage - Underground

Rainwater Harvesting and Conservation

Permeable Pavements

Other Stormwater BMPs

Types

- Sand filters
- Hydrodynamic devices
- Inlet Traps
- Gross Solids Removal Devices
- Purpose
 - Target floatable trash and suspended solids
 - May be tailored to other pollutants (e.g. hydrocarbons)
- What they don't do
 - Increase evapotranspiration and infiltration

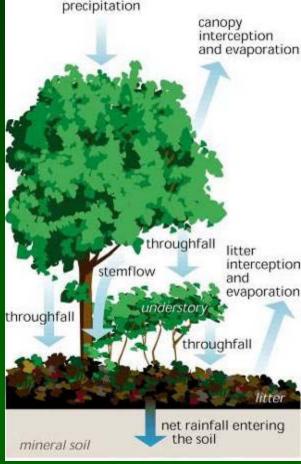
Agenda

Introduction

Types of Practices and What They Do

- Plants
- Soils
- Outlets
- Example Approach
- Strategies for Design/Implementation
- Implementation Examples
- Summary

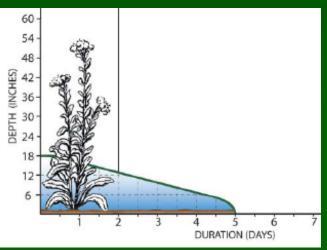
Plants


<u>Role</u>

- Water Uptake
- Stabilization
- Impeding Flow
- Filtration
- Infiltration
- Nutrient Uptake
- **Toxin Uptake**
- Pollutant Breakdown

Example Applications

- Nurse crop/cover crop
- Buffer strips
- Vegetated trenches
- Biofiltration/rain gardens
- Vegetated swales and ditches
- Stormwater ponds/wetlands
- Green roofs
- Native plant reconstruction

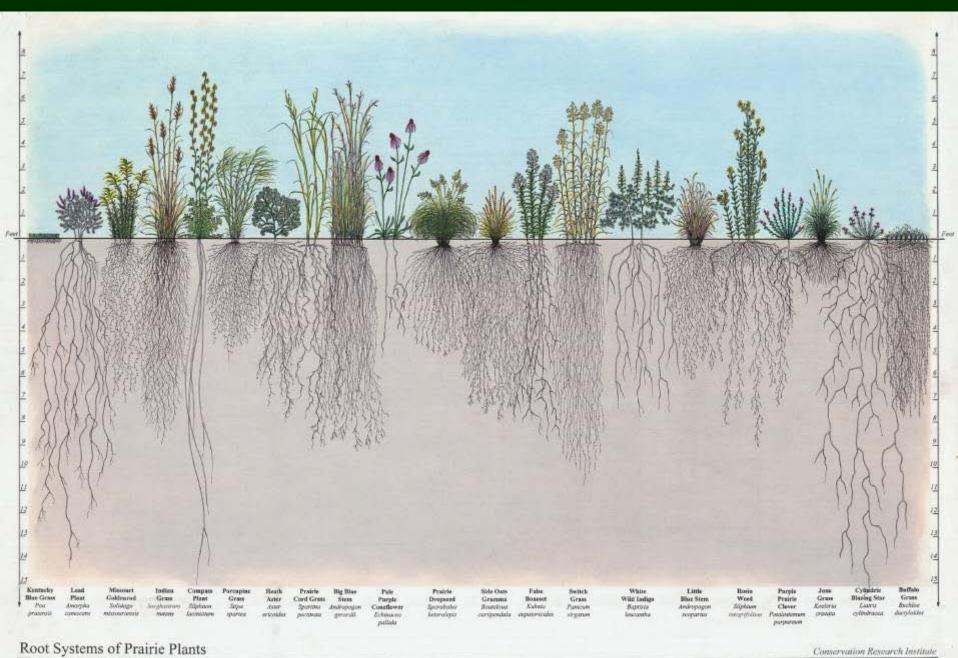


Plant Selection and Installation Considerations

Site Conditions to Investigate

- Texture, organic content and pH
- Water levels, soil moisture
- Adjacent plant communities
- Slopes

Amount of sun/shade

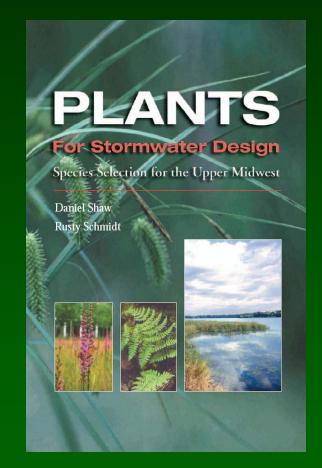

Environmental Threats

- Flood depth, duration and frequency
- Low water levels
- Sediment loads
- Pollutants and toxins
- Nutrients
- Salt
- Turbidity
- Erosion
- Invasive plants
- Herbivores

Transpiration Rates of Various Plants

Plant Name	Plant Type	Transpiration Rate	
Perennial rye	Lawn grass	0.27 in/day	
Alfalfa	Agriculture crop	0.41 in/day	
Common reed	Wetland species	0.44 in/day	
Great bulrush	Wetland species	0.86 in/day	
Sedge	Wetland/prairie species	1.9 in/day	
Prairie cordgrass	Prairie species	0.48 in/day	
Cottonwood	Tree (2 year old)	2-3.75 gpd/tree	
Hybrid poplar	Tree (5 year old)	20-40 gpd/tree	
Cottonwood	Tree (mature)	50-350 gpd/tree	
Weeping Willow	Tree (mature)	200-800 gpd/tree	

Source: Plants for Stormwater Design Volume II by D. Shaw and R. Schmidt (ITRC 2001)



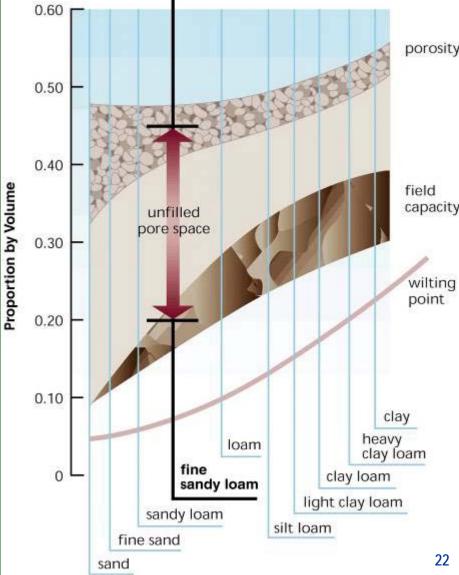
Nest Summe 1995

19

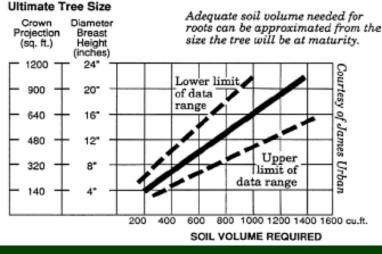
Native Vegetation Sources

- Michigan LID Manual
- Natural Resources Conservation Service (NRCS)
- US Forest Service
- State and Local Stormwater Manuals
- State Environmental and Natural Resource Agencies
- University Extension Services
- FHWA Roadside Use of Native Plants <u>www.fhwa.dot.gov/environment/rdsduse/wv</u> .htm
- Find a local native plant nursery <u>www.plantnative.org</u>

Agenda


Introduction

- Types of Practices and What They Do
- Plants
- Soils
- Outlets
- Example Approach
- Strategies for Design/Implementation
- Implementation Examples
- Summary

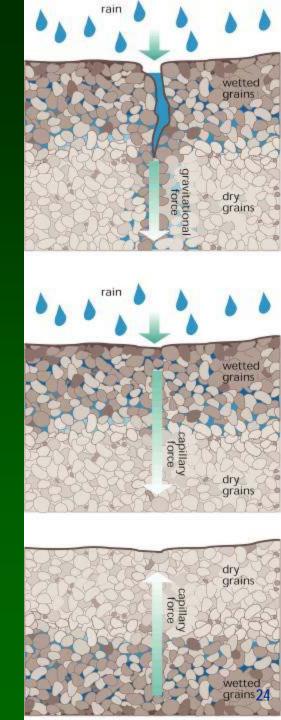

Porosity: void space of soil (space for water)

- Infiltration: movement of water through soil
- Field Capacity: proportion of void space that stays wet due to surface tension (i.e. after water drains by gravity)
- Wilting Point: point at which plants can no longer withdraw water fast enough to keep up with transpiration

Soil Characteristics

Source: FISRWG

Consider this . . .

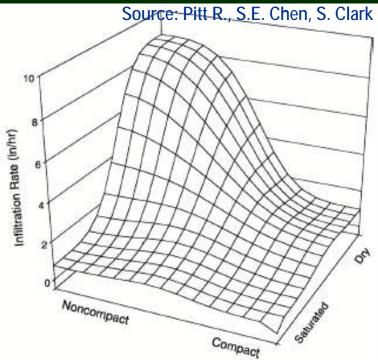

Consider a tree box sized for a 16" caliper tree (1,000 cf of soil)
 Fine sandy loam soil with 25% unfilled void space (0.45 porosity – 0.2 field capacity)

- Volume = 250 cf (1,000 cf * 0.25)
- Area of impervious surface needed to generate 250 cf of stormwater from a 1-inch of runoff = 3,000 sf
- Assuming drainage from ½ a 66-ft ROW equates to one tree box every 91-ft
- Ignored evaporation, infiltration, water uptake by plants, and depression storage

Infiltration Capacity

Dry Soils, Little or No Vegetation Sandy soils: 5 in/hr Loam soils: 3 in/hr Clay soils: 1 in/hr Dry soils with Dense Vegetation Multiply by 2 Saturated Soils Sandy soils: 1 to 4 in/hr Loam soils: 0.25 to 0.50 in/hr Clay soils: 0.01 to 0.06 in/hr

Source: Rawls, W.J., D.L. Brakensiek, and N. Miller, "Green-Ampt Infiltration Parameters from Soil Data" J. Hydr Engr. 109:62, 1983), EPA SWMM 5 Users Manual, and FISRWG

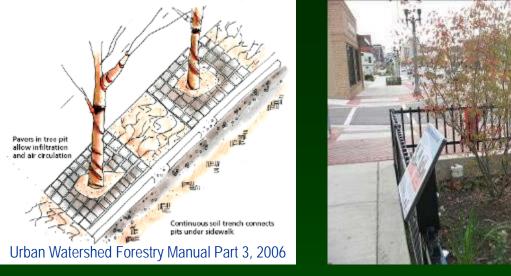

What if you combined
a basin
a water loving tree, and
an engineered soil mix?

Effects of Compaction on Infiltration Rates

- Decreased infiltration
- Decreased root growth

Increased runoff

Source: R. Pitt, S.E. Chen, S. Clark	Number of tests	Avg Infil (in/hr)	COV
Noncompacted sandy soils	36	13	0.4
Compacted sandy soils	39	1.4	1.3
Noncompacted and dry clayey soils	18	9.8	1.5
All other clayey soils (compacted and dry, plus all wetter conditions)	60	0.2	2.4



Engineered Soil Mix Examples

- Prince Georges Co. MD: 50-60% sand; 20-30% compost; 20-30% topsoil (Minnesota added <5% clay stipulation)
- NCSU: 85% sand; 12% fines; 3-5% organics
- Portland OR: 60-70% sand; 30-40% compost (35-65% organic); particle gradation specified
- Low Impact Development Center: 50% sand; 30% planting soil (50-85% sand, 0-50% silt, 10-20% clay, 1.5 -10% organic); 20% shredded hardwood mulch
- Typical infiltration rate of soil mixes is 1 to 8 in/hr

Protect native soil during construction by limiting access, grading/clearing
 Increase soil volume by connecting planting areas, thereby sharing rooting

space

- Alternative Soil Strategies
 - Soil Trenches
 - Structural Soil (use of stone to provide load bearing integrity while preserving void space)
 - Suspended Pavements and Structural Cells

 Avoid conflicts between rooting and infrastructure subgrade by using soil free aggregate under hardscape surfaces or use of root barriers

Agenda

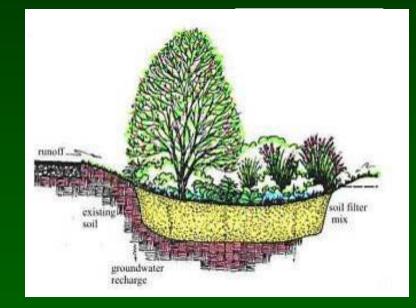
Introduction

- Types of Practices and What They Do
- Plants
- Soils

Outlets

- Example Approach
- Strategies for Design/Implementation
- Implementation Examples
- Summary

Outlet Controls

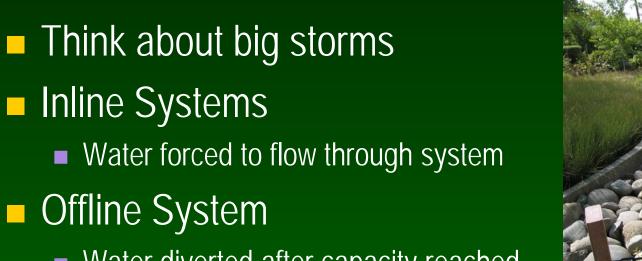

Underdrains
Liners
Overflows
Diversions
Injection Wells

Outlet Controls

Filtration vs Infiltration

Underdrain

Overflow/Diversion

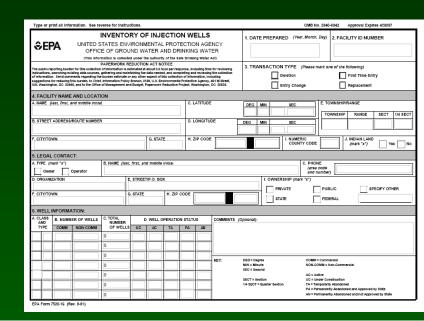

Underdrained systems are flow-through systems, and discharge water from even small 'design storms'.

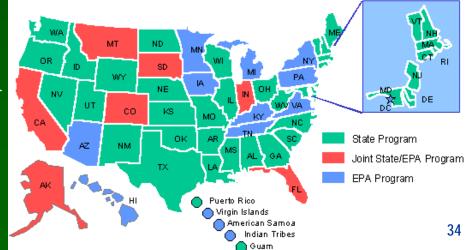
Reasons to Include Underdrains and Liners

- Protect surrounding infrastructure
 - Basements
 - Roads/parking
- Isolate contaminated soils
 Leaky underground storage tanks
 Prevent unwanted flora and fauna
 - Mosquitoes

Overflows and Diversions

Water diverted after capacity reached





- Class V wells are shallow wells used to place a variety of fluids directly below the land surface.
- An "injection well" is a "well" into which "fluids" are being injected (40 CFR §144.3).
- Memo & guide issued June 13, 2008 by EPA clarifies which infiltration practices are generally considered class V wells
 - If stormwater directed into hole that is deeper than it's widest point or
 - has a subsurface distribution system
- Potential examples
 - Infiltration trenches
 - Commercially manufactured stormwater infiltration devices
 - Dry wells and seepage pits
- Reporting requirements

Class V Injection Well

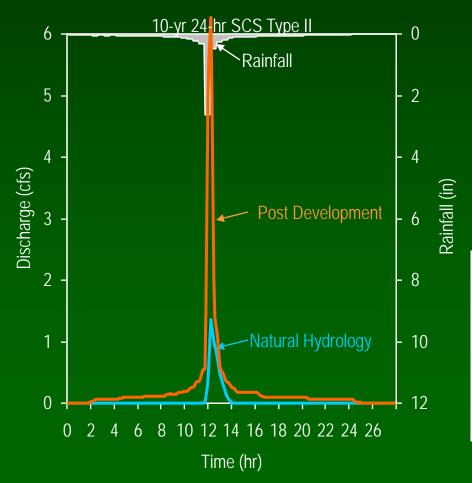
Agenda

Introduction

- Types of Practices and What They Do
- Plants
- Soils
- Outlets
- Example Approach
- Strategies for Design/Implementation
- Implementation Examples
- Summary

Consider a typical development example

- Area = 2.98 ac
 - Building Footprint = 20.9%
 - Parking/sidewalk = 36.5%

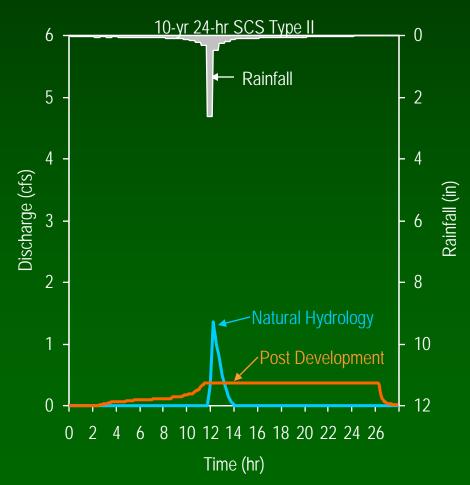


ę

36

No Stormwater Controls

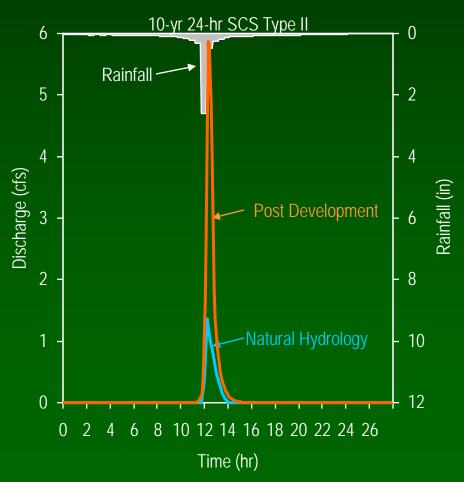
 Traditional development with no stormwater controls

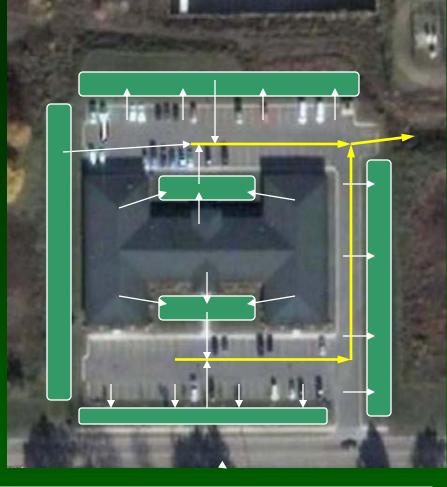


Average Annual (from 50-years)	Natural Hydrology	Post Development
Evaporation	10%	19%
Infiltration	90%	38%
Surface Runoff	<1%	43%

Traditional Detention

- Traditional drainage system
- Detention sized with 0.15 cfs/acre maximum release rate
- No change in average annual surface runoff

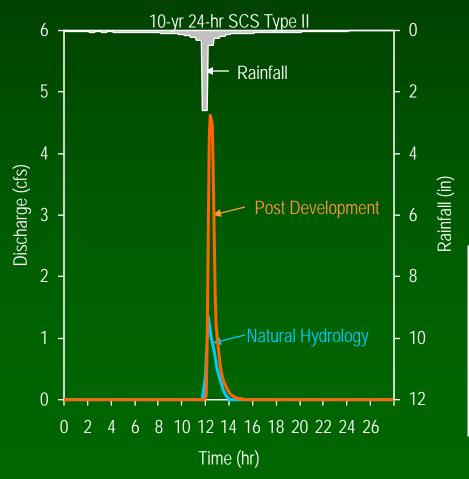




Average Annual (from 50-years)	Natural Hydrology	Post Development
Evaporation	10%	19%
Infiltration	90%	38%
Surface Runoff	<1%	43%

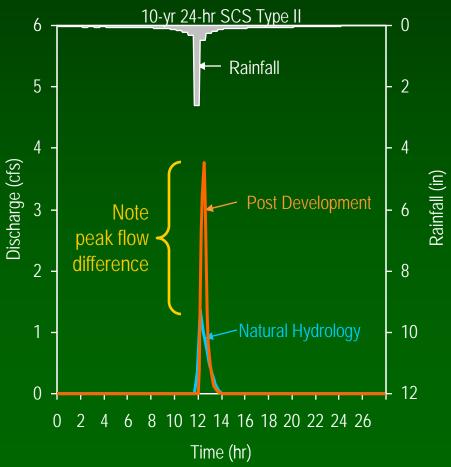
Impervious — Pervious

- Impervious surfaces discharge to green areas
- Green areas discharge to drainage system
- Decreased average annual surface runoff from 43% to 9%



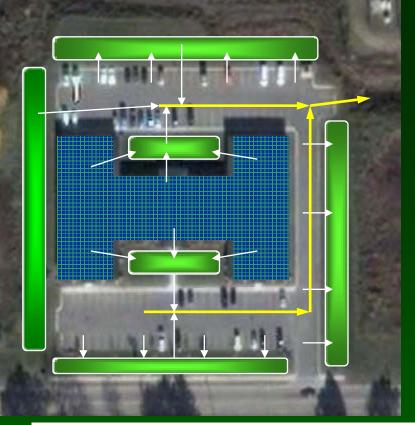
Average Annual (from 50-years)	Natural Hydrology	Post Development
Evaporation	10%	20%
Infiltration	90%	72%
Surface Runoff	<1%	9%

Added Storage

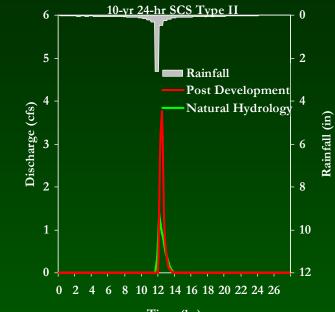

- Impervious → Pervious
- 1-inch roof storage (or equiv)
- 1-inch storage on pervious areas



Average Annual (from 50-years)	Natural Hydrology	Post Development
Evaporation	10%	32%
Infiltration	90%	66%
Surface Runoff	<1%	3%


Enhanced Infiltration and Evapotranspiration

- Impervious → Pervious
- 1-inch roof storage (or equivalent)
- 1-inch storage on pervious areas with enhanced rates



Average Annual (from 50-years)	Natural Hydrology	Post Development
Evaporation	10%	32%
Infiltration	90%	67%
Surface Runoff	<1%	1%

Development Example

	/1 N
Time	(hr)
1 mile	(111)

Description (cumulative BMPs)	Average Annual Surface Runoff
Natural Hydrology (prior to development)	<1%
Post Development (no stormwater controls)	43%
Detention for 10-yr storm with 0.15 cfs/ac outlet	43%
Discharge the impervious surfaces to green surfaces before piping	9%
Add 1-inch of storage on roof and green spaces	3%
Improved/amended soils and vegetation	1%

Continuous simulation of 50-years of rainfall data. Modeling done with EPA SWMM

Agenda

Introduction

- Types of Practices and What They Do
- Plants
- Soils
- Outlets
- Example Approach
- Strategies for Design/Implementation
 Implementation Examples
- Summary

Design Strategies

- Preserve natural systems
- Engineer systems to mimic natural functions
 - Evapotranspiration ↑
 - Plants (water uptake and transpiration)
 - Surface water (evaporation)
 - Infiltration \downarrow
 - Soils
 - Storage (provides additional time to infiltrate)
 - Surface Runoff \rightarrow
 - Pipes, gutters, swales, ditches, underdrains
 - Time of concentration (longer is better)
- "Treat" raindrop as close as possible to where it fell
- Lots of little BMPs instead of few regional systems
- BMPs in series not parallel

Planning During Design

Design BMPs with maintenance in mind

- ROW, easements, vehicle access, cleanouts, manholes
- At what depth should sediment be removed?
- Involve maintenance staff on BMP selection and design
- Prepare a site specific maintenance guide

Think about

- Staff gauges or offset points
- Dewatering pipes and valves
- Geese, mosquitoes, rodents, etc.

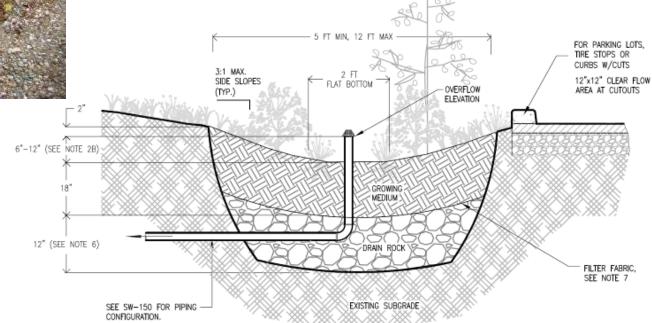
Design Details

- Test infiltration capacity, don't assume it
- Observation ports for water levels
- Underdrains designed to be cleaned
- Ponding depth in bio-systems approximately 6-12 inch
- Extend time of concentration

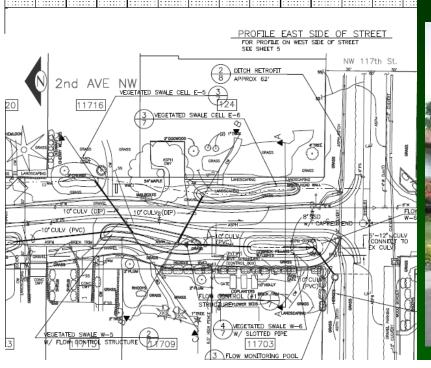
Ideas to Consider

- Roto-till pervious surfaces before topsoil/seed
- Amend soils
- Loosen up compacted soils with a ditchwitch/auger and leaf compost
- Valves on underdrains
- If you need an underdrain, don't put it at the bottom
- Take every opportunity to educate the public
- Adopt-a-rain garden
- Try something. Anything is better than nothing.

Agenda


Introduction

- Types of Practices and What They Do
- Plants
- Soils
- Outlets
- Example Approach
- Strategies for Design/Implementation
- Implementation Examples
- Summary


Residential Rain Gardens

Bioretention Swale

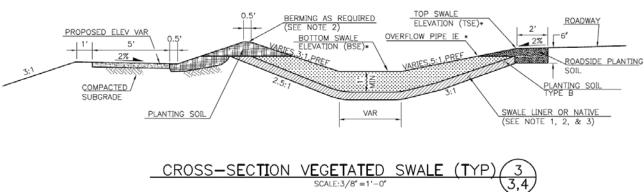
Bioretention Swale

GROUND

EXISTING PROPOS

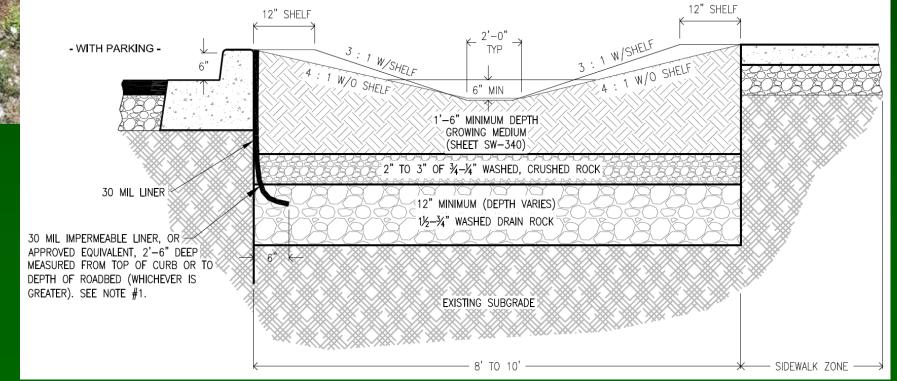
814 7+74.16 87 18.57 85E = 375.

i di la

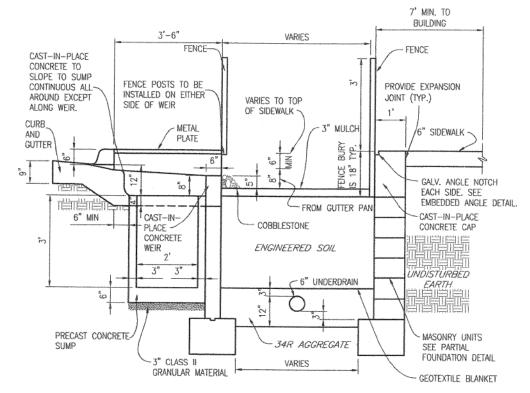

E¹⁷8

NHie Έβ B:29:

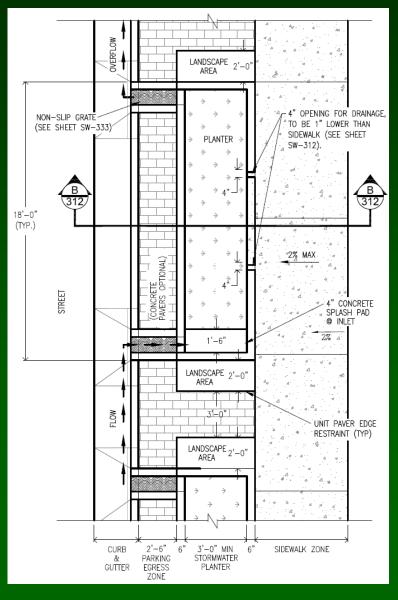
9.5 STA: 7.40 RT 22.56 TSE = 3


5TM : 74-11.1.39 51: 22:41: 85E := 375.4

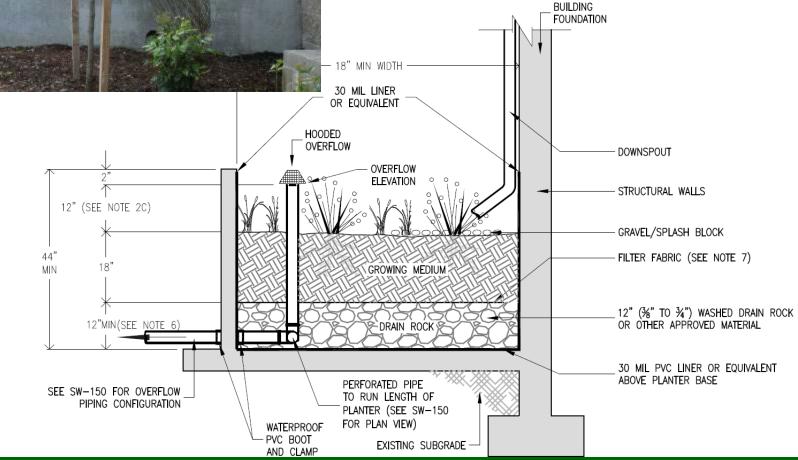
Bioretention Swale with Parking



Bioretention at Office Complex



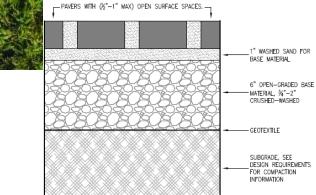
Bioretention Planter



Bioretention Planter

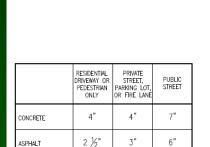
Planter Box Style Bioretention

Green Roof



* SEE OTHER DETAIL BELOW FOR OPTION.





PERMEABLE CONCRETE BLOCK OR "PAVER" SYSTEMS

PERVIOUS (OPEN GRADED) CONCRETE AND ASPHALT SYSTEMS

EXHIBIT 2-8 PERVIOUS PAVEMENT REQUIREMENTS FOR TOP LIFT DEPTH, ENGINEERING, AND COMPACTION.

2 3⁄8"

NO

NO

PAVERS

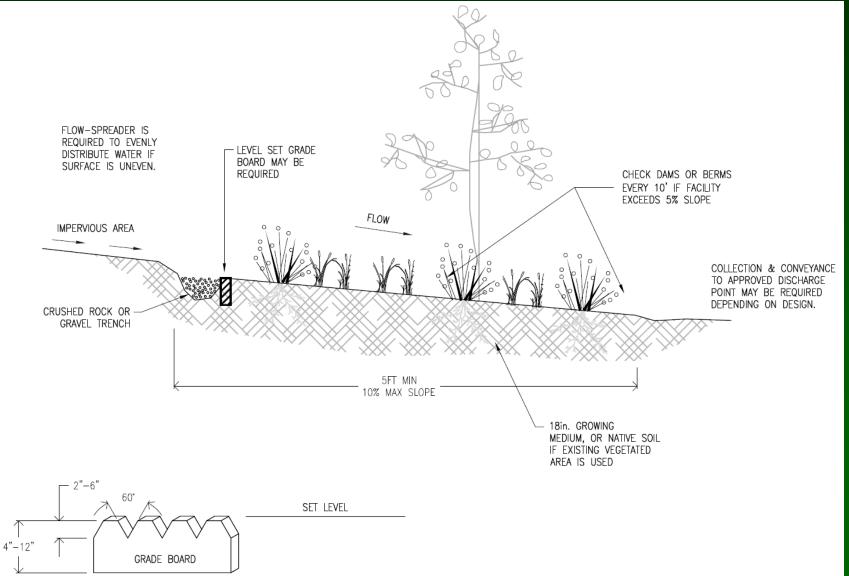
ENGINEERING REQ'D

COMPACTION REQ'D

3 1/8"

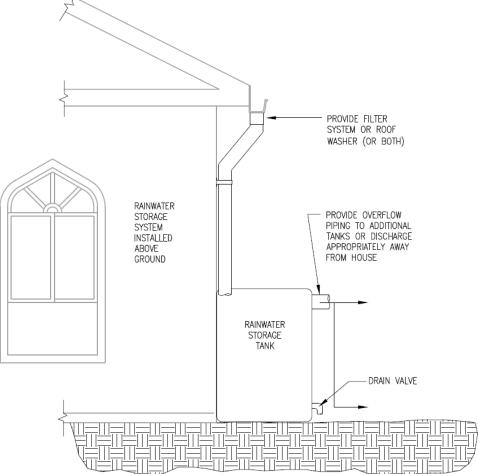
YES

95%

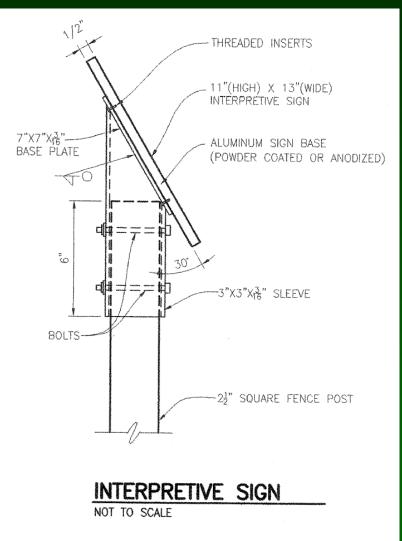

3 1/8"

YES

YES



Filter Strip



Rainwater Harvesting

Interpretive Sign

Agenda

Introduction

- Types of Practices and What They Do
- Plants
- Soils
- Outlets
- Example Approach
- Strategies for Design/Implementation
- Implementation Examples
- Summary

Putting it All Together . . . Recreating Natural Hydrology

- Protect natural features
- Let pervious be pervious
- Minimize impervious surfaces
- Route grey to green
- Promote vigorous plant growth
 - Slow the water down
- Design for stormwater as an asset and amenity

Dan Christian, Tetra Tech 517.394.3091 Dan.Christian@TetraTech.com

Think outside the pipe!

