Total Maximum Daily Load and Implementation Recommendations to Improve Water Quality In Ox Creek

Public Meetings
March 7, 2013
Benton Harbor, MI
Overview

• Why are we concerned about Ox Creek?
• What is a TMDL and why is it needed?
• TMDL Target Development
• What does this TMDL mean for point sources and non-point sources (allocations)?
• What assurance do we have that the TMDL will be implemented?
• Implementation recommendations.
• Future Monitoring
• Questions and Comments.
• Open time to look at maps and ask further questions.
Ox Creek Watershed

16.5 miles²
Ox Creek Watershed

16.5 miles2
Ox Creek Concerns

- Impaired (not healthy)
- “Poor” bug community throughout the watershed 2001, 2006
- Designated Uses not being met
- Requires a TMDL – scheduled 2013
Why do we use macroinvertebrates (bugs)?

- Types and diversity of bug community reflects water quality and habitat quality
- Different kinds of bugs are more or less sensitive to pollution/habitat disturbance
- Bugs live there throughout the year vs. a water sample which is a “snapshot” of water quality.
Designated Uses

- Agriculture
- Navigation
- Industrial Water Supply
- Fish consumption
- Other Indigenous Aquatic Life and Wildlife
- Partial body contact recreation
 - Total body contact (seasonally)
- Warmwater Fishery
 - Coldwater Fishery
Why the Poor Scores?

- **Causes:** other flow regime alterations, sedimentation/siltation, and solids (suspended/bedload)
- **Source:** stream bank modifications, storm water quality and quantity
Evidence

- Based on observations
 - Turbid flows during high flow events
 - 4 foot rise in water during relatively moderate rain event
 - Fine layer of silt on most substrates throughout watershed

- Supported by data
 - suspended solid loads higher in Ox Creek; compared to streams with acceptable bugs
Why is Sediment Bad for Bugs?

- Sediment covers habitat
- Scours biota
- Sediment causes turbidity
 - Impacts plant growth
- Changes channel shape
- Sediment can harm fish
 - Habitat for spawning
 - Egg development
 - Harms Fish Food (bugs)
Why is Excessive Flow Bad for Bugs?

- Wash Bugs off substrate
- Don’t have time to recolonize
- Cause erosion of stream banks
- Storm water flows bring in sediment and other contaminants (nutrients, oil, gasoline, residuals from exhaust) from upland sources.
Additional Possible Causes

• Contaminated sediment
• Chronic WQS exceeded for PAHs
• Possible sources included storm water runoff, contaminated venting groundwater, old industrial contaminated sites.
• Not enough evidence/data to develop TMDL
Total Maximum Daily Load = TMDL

- Calculation of **maximum amount of a pollutant** that a waterbody can receive and still meet water quality standards

- An **allocation** of that amount to the pollutant's sources.
 - Point sources (NPDES permits)
 - Non-point sources (everything else, including unregulated storm water)

- **Required** by Clean Water Act and USEPA for waterbodies that are not meeting designated uses [Section 303(d)]
TMDL Process

Designated Use Not Being Met

Pollutant Identified and Allowable Levels Calculated

Allocations Made to Source Types

Document Written: Explains Actions occurring or needed to restore quality of the resources
TMDL Development

Regulatory Framework

TMDL Report -- Required Elements

- Applicable WQ Standards
- Loading Capacity
- Source Assessment
- Allocations
- Seasonal Variation
- Margin of Safety

TMDL = WLA_{Point Sources} + WLA_{MS4} + LA + MOS
TMDL Development

Problem Solving Framework

Practical approach using key questions ...

- **WHY** the concern
- **WHAT** reductions are needed
- **WHERE** are the sources
- **WHO** needs to be involved
- **WHEN** will actions occur
Ox Creek TMDL

WHY the Concern

POOR BUG SCORES

- Yellow: Acceptable
- Red: Below Average
Total Suspended Solids
Sampling Locations
Ox Creek TMDL

WHAT are the Targets

★ Total Suspended Solids (TSS):
 300 mg/L *Daily Maximum*

★ Flow: *Affects both bugs and TSS Loads*
Total Suspended Solids

What is Ox Creek’s condition?

Ox Creek TSS Sampling

Yore-Stoeffer

Ox Creek

- TSS Sample
- Maximum TSS

Blue Creek, Yore, Meadowbrook, Crystal, Empire, Britain, Water
Total Suspended Solids

How does Ox Creek compare?

Ox Creek Compared to “Average” Bug Sites

Ox Watershed	Average Sites
Yore-Stoeffer | SB Black
Ox Creek | Upper Paw Paw

300 mg/L

TSS

Daily Maximum
Ox Creek TMDL

Why is Flow Important?

Used to calculate loads

Load = Flow * TSS * Conversion Factor

Affected by impervious cover

(amount of runoff & “flashiness”)
Ox Creek

Identifying Representative Flow

Galien River *(located south of Ox Creek near Sawyer)*

- Monitored daily for 16 years by US Geological Survey
- Has acceptable bug scores based on DEQ sampling
- Used to identify representative 1-day maximum flow
Flow

How does it affect the TMDL?

Load Capacity = \(\text{Flow} \times 300 \text{ mg/L} \times 0.002697 \)

- **High Flows**: 10.4 tons/sq.mi per day
- **Current Ox Creek Flow Conditions Leads to Increased Allowable Load**
- **Allowable Daily Maximum**: 6.2 tons/sq.mi per day

- Based on Ox Creek Flow Conditions
- Based on Galien River Flow Conditions
- Allowable Daily Maximum TSS Load

Flow Duration Interval (%)
Ox Creek TMDL

WHERE are the Sources

- Nonpoint
 - Land Related (Agriculture, Urban)
- Point
 - Regulated Stormwater
Ox Creek TMDL

Regulatory Framework

\[
\text{TMDL} = \text{WLA}_{\text{Point Sources}} + \text{LA} + \text{MOS}
\]

<table>
<thead>
<tr>
<th>183</th>
<th>=</th>
<th>71</th>
<th>+</th>
<th>112</th>
<th>(Implicit)</th>
</tr>
</thead>
</table>

- **Total Suspended Solids** *(tons/day)*
- **TMDL Allocations**
Ox Creek TMDL

WHO Needs to be Involved

Wasteload Allocations

- Berrien County Drain Commission
- Berrien Co. Road Commission
- Michigan DOT
- Benton Harbor
- Industrial
Ox Creek TMDL

WHO Needs to be Involved

Load Allocations

- Benton Charter Township
- Bainbridge Township
- Sodus Township
Needed Reductions

<table>
<thead>
<tr>
<th>Subwatershed</th>
<th>Load (tons/day)</th>
<th>Load Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Middle Yore - Stoeffer</td>
<td>76.0</td>
<td>55%</td>
</tr>
<tr>
<td>E Ox Headwaters</td>
<td>45.2</td>
<td>52%</td>
</tr>
<tr>
<td>G Middle Ox</td>
<td>163.4</td>
<td>57%</td>
</tr>
</tbody>
</table>
What a TMDL Can and Can Not Do

• TMDL can
 – Exercise regulatory authority over point source discharges
 – Regulations require permit limits to be consistent with TMDL
 – Provide available information on potential sources of contaminants

• TMDL Can NOT
 – Exercise authority over non-point sources (LAs)
 Cooperation is the goal!
Ox Creek TMDL

Reasonable Assurance

Current programs help meet TMDL targets

- Stormwater permits
 - Must be consistent with TMDL
- MI Agriculture Environmental Assurance Program
- Two Rivers Coalition
- Paw Paw River Watershed Management Plan

http://www.swmpc.org/pprw_mgmt_plan.asp
Ox Creek TMDL

Implementation Recommendations

Paw Paw River Watershed Plan Priorities

- Wetlands Protection & Restoration
- Stormwater Management
- Erosion Reduction
 - Field BMPs
 - Riparian Buffers
 - Stabilize streambanks
Ox Creek TMDL

Implementation Recommendations

Wetlands Protection & Restoration

- **Provides:**
 - Floodwater Storage
 - Sediment Retention

- **Paw Paw WMP effort identifying potential opportunities**
“Sediment Retention” refers to the ability of the wetland to retain sediment and other particulates that would otherwise be transported downstream. Sediment retention significance is based on the Landscape Level Wetland Functional Assessment performed by the Michigan Department of Environmental Quality to rank historic and existing wetlands based on their ability to perform certain functions. The extent of Existing Wetlands is based on the 2005 National Wetland Inventory and these wetlands are assumed to be performing these functions currently. The extent of Historic Wetlands is based on NRCS hydric soil data. It is assumed that these areas have been filled or drained, but they have the potential to serve this function if restored.
Ox Creek TMDL

Implementation Recommendations

Stormwater Management

- **Best Management Practices**
 - Vegetated Swales
 - Rain Gardens
 - Pervious Pavement
 - Silt Fences
 - Road Maintenance Practices

- **Local Stormwater and Post-construction Ordinances**
Ox Creek TMDL

Implementation Recommendations

Agricultural Erosion Reduction

- **Best Management Practices**
 - Riparian Buffers
 - Filter Strips
 - Grassed Waterways
 - Conservation Tillage
 - Ditch Management

- **Cost-effective targeting for BMP implementation**
 (Paw Paw WMP effort)
Implementation Recommendations

Targeting High Impact Areas

[Sediment Calculator for the Paw Paw River Watershed]

- **Crystal**
- **Meadowbrook**
- **Yore**
- **Blue**

Base map from the HIT tool adapted for Paw Paw River Watershed.

Institute of Water Research
Michigan State University
The Nature Conservancy
Southwest Michigan Planning Commission

http://38.8.121.111/sedcalc/

Denotes location of MDEQ TSS monitoring sites
Implementation Opportunities

Getting Started

Potential Collaboration Partners

- Southwest Michigan Planning Commission
- Berrien County Drain & Road Commissions
- Berrien County Conservation District
- City of Benton Harbor & Benton Charter Township
- Land Owners

Cooperation is the goal!

Potential DEQ Funding Sources

- Clean Michigan Initiative
- Federal Clean Water Act Section 319 Grants
Goal of OX Creek TMDL

• To restore biological communities to meet Michigan Water Quality Standards.

• Repeatable “acceptable” macroinvertebrate community scores throughout watershed.

• If TSS targets are met and macroinvertebrates score poor, TMDL targets will be revisited.
What is next?

• Draft TMDL on public notice through March 26, 2013.

• http://michigan.gov/waterquality

• Respond to comments and submit to EPA for final approval.
More Information

• **Watershed Characterization Report (2010)**
 – Landuse, geology, soils,
 – Data summary of all data collected
 – Source Assessment
 • Point Sources, Remediation Sites, Storage Tanks

• **Linkage Analysis Report (2012)**
 – Potential Stressors
 – Flow
 – Sediment Quality, Suspended Sediment
 – Target Development

http://michigan.gov/waterquality
Contact Information

• Tamara Lipsey, MDEQ

• Constitution Hall
 525 W. Allegan 2nd floor
 South Tower
 Lansing, MI 48933

• 517.335.1058 or
 lipseyt@michigan.gov